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Abstract. Geometric motion in rank-one symmeuic spaces is shown to describe a simple’ 
supersymmetric quantum mechanical system. Supersymmetry does indeed lead to a purely 
algebraic solution for the compan case, providing eigenfunctions and eigenvalues, and also for 
the Riemannian odd-dimension hyperbolic and Euclidean spaces where SUSY supplies easily the 
eigenfunctions and hence the phase shifts. In particular, the Jost functions in the latter case mt 
polynomial since the Hamiltonian is seen to be the nth supersymmetric partner of the Hamiltooian 
of fire motion. For the other spaces, supersymmetry proves to be very effective in simplifying and 
illuminating several aspcts of the theory, and suggesting futhex gsnenlizarions. 

1. Introduction 

According to Einstein, forces originate in geometry; he suggested the study of free, i.e. 
geodesic motion in curved spaces instead of introducing forces or potentials in ordinary, flat 
spaces. This geometric approach to interactions, fist realized in gravitation theory, pervades 
much of modem theoretical physics. Exploring this point of view one of us has recently 
defined symmeby scattering as a comparison between quantum motion in a Riemannian 
symmetric space X = G / K of non-compact type and the motion on its flat tangential space I I]. 
The S-matrix was computed explicitly from the general theory of geometric analysis for all 
Riemannian symmetric spaces 121; the results were expressed in terms of the multiplicity of 
the roots of the corresponding Lie algebras. The potential of the equivalent onedimensional 
problem could be retrieved by the inverse scattering method from the S-matrix for rank-one 
spaces, obtaining of course the function of the LaplaceBeltrami operator or a very good 
approximation to it [3]. 

On the other hand, another one of us has shown the remarkable features of the quantum 
mechanical (bound) motion in the compact (still rank-one) case [4]. 

In this paper we combine these results and consider the supersymmetric approach to treat 
geometric motion on arbitrary rank-one Riemannian symmetric spaces. To begin, we explain 
in section 2, why the odd orthogonal hyperbolic spaces €Iz”+’ = O(k+ 1,1)/0(2n+ 1) have 
polynomial Jost functions and hence a rational S-matrix; the reason is that the corresponding 
Hamiltonian is the nth supersymmetric partner of the Hamiltonian of free motion which 
corresponds to the space €I3. Further, in this section, a connection is made with the other 
odddimensional spaces, spherical, Sh+’, and Euclidean, E&+I which also have polynomial 
Jost functions in appropriate variables; the reason being the same as for the hyperbolic 
case. Section 3 will explain the general supersymmetric setting of the LaplacuBeltrami 
operator for arbitrary rank-one symmetric spaces. Writing the Laplacian as A = (d + 6)’. 
0305-4470/93~15825+10$07.50 @ IS93 1OP Publishing Ltd 5825 



5826 

its supersymmetric form is obvious; Witten [51 has drawn profound consequences from this 
simple fact. 

By relating the Laplacians of different spaces by supersymmehy, one goes a long way 
towards understanding, for example, the ubiquitous appearance of the gamma functions in the 
S-matrix; we find supersymmetric relations not only between the even spheres S2" but also 
between hyperbolic, complex and quatemionic projective spaces; also the 'octonionic' space, 
a non-compact form of F4 is shown to be a supersymmetric partner to Sp(3, 1)/Sp(3) 8 Sp( 1) 
after two supersymmetric steps. In section 4 we study the general compact case; the second 
quantum number m a  is seen to be related to the spheres S", n = 0,1,3,7 of norm-one 
numbers of a division algebra I!%, @, H and 0 respectively. The compact and non-compact 
cases are essentially related by the change sin 0 H sinhr which, although not quite analytic 
continuation, is a well studied duality [61. We conclude this section with a brief look at the 
Euclidean case: there, the dilatation (in fact, conformal) invariance of the equivalent one- 
body problem is seen to produce constant phase shifts in the scattering problem. Our final 
section 5 will contain a comparison with the previous work of the Yale group, namely Ahassid 
etaZ[7]; they showed in particular how the other homogeneous spaces like 0(2,1)/0(l ,  I ) ,  
the one-sheeted hyperboloid, are an analytic continuation of spheres and therefore also exhibit 
a manifest supersymmetric formulation; again, for some cases a complete algebraic solution 
is obtained by means of supersymmehy. We also wish to mention the work of Olshanetski and 
Perelomov [8] relating ID many-body problems to symmetric spaces. 

We collect here for the reader's convenience some formulae and data which we are going 
to use repeatedly later. 

A Riemannian symmetric space is a Riemannian manifold with (covariant) constant 
curvature. Riemannian symmetric spaces are about the simplest manifolds to study; they 
can all he realized as homogeneous spaces X = G/K where G is a simple Lie group, compact 
or not, or an 'inhomogeneous group' (in the flat case), and K is a compact subgroup; these 
objects have been classified since the work of Cartan in the 1920s; there are four series and an 
exceptional case. The standard mathematical reference is Helgason 161. 

Here we refer for definiteness to the rank-one symmetric spaces of the non-compact type; 
these spaces, X, can be coordinated by a length variable r, 0 6 r < 00 and some angles. The 
Cartan-Killing form in G descends to the quotient X = G/K in the form of the Laplacian 
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(PI, P 267) 

(1.1) 

where 62 depends only on the angular variables. The integers m, are related to the multiplicity 
of the roots of the symmetric space GIK. The following table records their value and other 
useful information. 

dZ d d - + m, cothr- + 2macoth2r- + 62 
dr2 dr dr 

Table 1. Parameters for h e r d - o n e  Riemannian symehicspnces ofcompact type. A(C)  is the 
complex hyperbolic space, I F 0  is the quatemionic hyperbolic s p x e  and F4/0(9) is the Cayley 
plane. 

Series Name Quotient GIK Dimension m. m k  

*+I Zn t 1 2n 0 
2n-1  0 
Z(" - 1) 1 
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2. Motion supersymmetric to free motion 

case (l). Supersymmetric quantum mechanics, shoner SUSY QM, as establiished,by Witten 
[lo], deals in the simplest case with two Hermitian anti-commuting operators, C and Q, with 
known squares: 

IC, Q} = 0 cz = I Q Z = H .  

This can be realized as a one-dimensional problem 

e(?) = UZP, + UI W(r) C = ~3 (2.2) 

which produces a SUSY QM pair of Hamiltonians 

H* = p; + v*(r) = p: + W(r)’& w(r)’ (2.3)’ 

where p, is theone-dimensional impulseoperator and W (r)‘ = dW (r)/dr; these Hamiltonians 
can also be written as 

with 

d d 
A = - dr + w(r) and A’ = -- dr + ~ ( r ) ,  

We wish to consider the SUSY QM partner(s) of the free motion V = 0; the regular solutions 
have been considered before [ll]. The equations to solve are 

W ( r )  * w’(r) = const. (2.6) 

There are five different solutions: 

cothr. 

When the constant in equation (2.6) is set to & I  or 0, the free (V = constant) case becomes 
the first partner. The corresponding five families of phassinvariant potentials in the sense of 
Gendenshtein [ 121 are up to a constant term depending on i: 

E ( [  + l)/r2 
I ( [ +  I)sec*r 1 = 1 , 2 ,  ... 

1(1+ 1)cosec2r 1 = 1 , 2 ,  ... 

1 = 1,2, ... 

W r )  = - i ( l +  l)sech*r 1 = 1.2,. . . I [ ( E  + 1)cosech’r l = 1,2, .  . . . 
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AU these potentials are completely solvable by algebraic methods, essentially by Q- 
transforming the free-wavefunction solution for the scattering, cases (i). (iii) and (v). or the 
kernel of the A operator for the bound states, cases (ii), ( i )  and (iv). For example, the solution 
ofthethirdcase[ll], 

L J Boya et a1 

&(r) = - I ( [ +  1)sech'r 

has I bound states 

E; = -m2 m = 1,2, .. . , I  ulk(r) = PA(sechr). (2.9) 

ul; are the eigenfunctions of the Hamiltonian with the potential V, and PA is an associated 
Legendre polynomial. The S operator, as advertised, is rational: 

' -ik+m 
S(k) = (-1)' n - 

ik+m m=l 
(2.10). 

All the singularity shucture comes from the bound state poles and there is no reflection due to 
the 'half-bound' state at threshold k = &see [ I l l  and [131. 

Case (ii)."ow, in previous work [ 1-31. the potential ofcase (v) appears forthe odd hyperboloid 

P+' = O(2n + 1, 1) /0(2n + 1). 

This potential is just 

&(r) = [ ( l +  1)cosech'r n = I + 1 

where the 'vacuum' corresponds to H3; so we now understand why in this case the Jost function 
is polynomial, and the S operator rational, as remarked in [31. It is to be noted that €I' can 
also be considered, of course, like a free space. 

For the even hyperboloids H2" SUSY QM is seen to be realized by 

W,(r) = Atanhr A = I  - - 1 (2.1 1) 2 '  

As we shall see in section 3, there is no automatic algebraic solution but all cases are related 
to one of them, say Hz. 

The compact and Euclidean odd cases Sa+' and Eh+' are also related to the free 
motion; duality accounts immediately to this for the spheres, which, if realized as Shtl = 
O(2n + 2)/0(2n + l), lead to the potential of case (iv) 

&(r) = 1 ( I +  1)cosec'r (2.12) 

whereas the Euclidean case is realized as case (i) before, namely 

V(r) = - + connected with Fib+' n = 1 + 1 . (2.13) 
rz 

Now, this produces the algebraic formulas for the reduced Bessel functions [ 141 

(2.14) 
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3. Supersymmetry of geometric scattering 

In this section we show that the problem of scattering for rank-one non-compact Femanniah 
symmetric spaces admits in all cases a SUSY QM formulation, A d  that these problems are 
related to each other in a precise way, so one only has to solve a few types. 

Consider the quadratic Casirni~ invariant operator CZ. For these spaces it becomes the 
Laplacian. The radial part is given by ([9], p 267) 

d2 d d d2 d 
A - - + mu cothr- + 2mz, coth2r- = - + f(r)- (3.1) - dr2 dr dr dr2 dr 

where the multiplicities were given before in table 1; now in the spectral equation A,Y(r) = 
hY(r) we can get rid of the first derivative term by the substitution Y = F@ where 

The new Hamiltonian acting on @ is 

(3.3) 

which shows explicit supersymmetry, with superpotential W(r) and 'ground state' F(r) (cf 
(2.3)) given by 

f ( r )  m, coth r + 2m2, coth 2r W(r, mu, m k )  = - = 
2 2 

(3.4) 

with 

(3.5) 

The partner potential V-(r, ma, m b )  = w(r, m,, ma)' - W(r, mu, mb)' corresponding to 
the symmetric space having the parameters m, and m b  can be expressed up to a constant 
using the potential V+(r) of another symmetric space. We have 

By shifting the zero-point energy scale we can get rid of the constant term appearing in the 
SUSY QM potentials. In the sequel we consider only the r-dependent part of such potentials. 
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Let us determine now the family of the SUSY QM potential corresponding to each type of 
symmetric spaces. The orthogonal case is the simplest: for €I2"+' we have m. = 2n, m a  = 0 
and 

W ( r , n )  = ncothr n = 1,2, ... . (3.7) 

This family yields the quasi-free case considered before with rational S operator. 
For €I2" we have ma = 2n - 1, m a  = 0, yielding 

The SUSY chain starts from 

1 
4 + -  ( n = 1  m,=1 m a = 0 )  (3.9) 

dz 1 
n+ =-G - - 4 si&' r 

which represents an attractive potential; there are no bound states, however, although we are 
in one dimension, because the singularity at the origin forces us to consider only 'odd' states: 
the 'ground' state is not allowed in the half-line r > 0. 

Let @z(r)  be the exact solution of (3.9) with @z(O) = 0, i.e. 

H+@2 = AA+@2 = E @ z .  (3.10) 

Now, using the formalism of SUSY QM we see that At@2 is an eigenfunction of H- for the 
same eigenvalue E = kZ: 

n- (A+@,)  = (A+A)(A+w = A+(AA+%) = E A + % .  (3.11) 

Hence, by repeated application of the operator A+ on the eigenfunctions on all the 
wavefunctions on A2" are found (cf (3.6)). 

This implies that the Jost functions associated with the Schrodingerequation corresponding 
to a potential determined from the symmetric spaces are also related. From (3.11) we have 
(the Jost function and the scattering operator are defined here following the convention given 
for instance in Taylor [IS]) 

This relation yields asymptotically 

(3.13) 

where c a ( k )  is the Jost function associated with the Schrdinger equation corresponding to a 
potential determined from S0(2n ,  1)/S0(2). We then have 

c2(,+1)(k) = (ik + n - +a@) (3.14) 
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which implies 

Hence the appearance of the gamma function is natural: 

Therefore, with the initial condition 
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(3.15) 

(3.16) 

(3.17) 

and using for the scattering operator Sh ( k )  associated with the Hamiltonian H+ the definition 
[15] S,(k) = cb(-k)/c*(k), we mover the formula ([3], equation (3.36)) 

r(ik) r(-ik + n - 4) 
r(-ik) r(ik + n  - $) ' 

&(k) = - (3.18) 

For the unitary and symplectic families the lowest members, n = 1, are duals of spheres, 
namely of P' (C) = 5' and P ' O  = S4; hence they are related similarly to the even-spheres 
chain: 

(ma. m d  = (0.1) ---f (0,3) --+ (0 ,5 )  4 

(3.19) ... ... ... ... ... ... ... 

P'(C)-+P"--+ 56 4 . 
For example, the dual to P'(C), i.e. for H'(C), the Hamiltonian turns out to be 

corresponding to the non-compact version of Sz with the scale change r 4 2r. 
For the general case, due to relation (equation (3.6)) 

(mm7 m) + (ma, m k  + 2) 

we obtain a few more relations: 

(ma, m d  =(4(n - 1),1) 4 (4(n - I), 3) 

€Iz"-'(@) 4 €I"@) 

and 

(ma. = (8, 1) 4 (8,3) --+ @ , 5 )  -+ (8,7) 

H5(C)-+ H3@ --+ ? + Cayleyplane. 

(3.20) 

(3.21) 

(3.22) 
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4. The compact spaces 

By duality, formulae. of the preceding section hold in the compact case with the obvious 
substitution hyperbolicfunctions + sphericalfunctions, and SUSY QM works just as well; 
in fact, bener, because now we can make explicit calculations of the spectrum, degeneracy 
and wavefunctions in all spaces (not only in the odd spheres) by purely algebraic means. The 
reason is that the spectrum is purely discrete and infinite, and the ground-state function is 
calculated by a quadrature (cf (3.4)) and its energy is set to zero. The energy of the excited 
states are computable from the substitution 

(4.1) I m, + m. + 2u i f m a = O  u = l , 2 , 3  . . . .  

Let us work the S2 case in detail: m, = 1, m a  = 0. The (superlpotentials and ground-state 
wavefunction are 

L J Boya et a1 

(ma, m a )  + (ma, m a  + 2u) if m a  j4 0 U = 1,2,3. .  . 

where Ab@) = 0 and A+@0(0) = 0. Here A = d/de + f cote. The spechum reads 

E, = $[(ma + 2u)' - m:] = w ( w  + 1) U = 0,1,2.. 

as is well known (see e.g. [12]). 
The first excited state is proportional to 

m [ -$ + ;cote f i  = cos0 1 
where in the bracket we use the superpotential of the next ladder, i.e. W = ;cote. 

space, as the procedure is completely mechanical; for the spheres S" the Laplacian 
We now give brief indications for an arbitrary compact Riemannian symmetric rank-one 

dZ d 
dB 

A@") = + ( n  - 1) cote- + 61 

corresponds to the superpotential 

n - 1  
W ( 0 )  hcot8 h = - (4.3) 2 '  

The ground state of the transformed Hamiltonian is obtained using 

d 
dB 

whereas the true ground state "0 in S" is (of course) constant, due to the factor F = 
e-lAmteda = s i d 8  (cf (3.2)); the energy spectrum is 

A+@,,@) = 0 A+ = -- + hcot, 0 @0(8) = sinA 8 (4.4) 

E,, = (A+v)2 -az=  u(w + n  - 1) v = 1,2,3 ... (4.5) 
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Table 2 Energy s p e c "  o f d - o n e  Riemannian symmetric spaces of compact type. 

as is well known (e.g. [9], p 16). We could very easily compute the wavefunction of the excited 
states, but shall refrain from doing so. 

We now calculate the spectrum for the other cases using the standard Gendenshtein [12] 
procedure valid for shapeinvariant potentials. From (3.5). (3.6) and (4.1) it follows for the 
general formula: 

E ~ , ~ , ~ ~  = ai[(m. + 2(m, + 2~) ) '  - (m, + 2m& = (+me + m a  + u)u (4.6). 

where the extra factor a is due to the normalization to radius 1 (this excludes S"). Table 2 
collects the general results. 

Intermediate betweenthe elliptic, S", and the hyperbolic w e ,  H", is the Euclidean one, IRP"; 
here, the absence of curvature produces no scattering; the Laplacian in polar coordinates is 

dZ n - 1  d 1 --+-- *@)-a? d r + F Q  (4.7) 

and therefore W = i ( n  - l)/r can act as a superpotential; the conventional potential is 

(n - l)(n - 3) 
4r2 

V(r) = 

which is purely centrifugal, repulsive except for n = 2, zero for n = 1,3 just as in the other 
cases S and H, and produces only constant phase shifts on reflection: 

(3 - n )  IT 
& ( k )  = -- n >  1 

2 2  (4.8) 

due to scale invariance [14]. 

5. Final Remarks 

A powerful algebraic theory of scattering has been developed by the Yale group [7]; they 
can also treat some pseudo-Riemannian spaces which were excluded from our treatment. The 
simplestcase they study corresponds to the onesheeted hyperboloid, SO(2, l)/SO(l, 1). The 
Laplacian 

dZ A @ +  1) 
dr2 cosh'r 

A = - + -  

where A can be integer or half-integer, corresponds to our quasi-free case 2 of section 2 (for A 
integer). 
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The Hamiltonian associated with (5.1) has both discrete and continuous spectra. They 
represent, respectively, the quantum aspects of closed and open geodesics in the one-sheeted 
hyperboloid; by contrast, the two-sheeted hyperboloid has a purely scattering potential, and 
the classical geodesics are all open. For a recent reexamination of the algebraic’ scattering 
see [16]. 

Olshanetski and Perelomov [8] consider one-dimensional classical and quantum systems 
interactingpairwiseviapotentialsofthefivetypes: (i) v(r)  = 1/r2, (ii) v(r) = u2/sinh2ur, 
(iii) V ( r )  = a2/sin2ur, (iv) V ( r )  = a2@(ur), (v) V ( r )  = I/rZ + o h 2 ,  where g~ is the 
Weierstrass p-function. Cases (iHiii) correspond to our symmetric spaces; in fact, in [SI 
these potentials are obtained as projections f” a symmetric space. The SUSY QM of the 
harmonic oscillator is well known; it su%ces to take as superpotential W ( r )  = r + b / r .  The 
connection to the Weierstrass function requires additionally techniques of algebraic geometry. 

There are several directions in which our work can be extended. An obvious one is higher- 
rank spaces; another is to study different quotient spaces, as in the Yale group. Several of these 
lines are now being explored. 
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